Lecture 10 — 20/11/2024

The p-n junction
- I-V characteristic: non ideal case
- Breakdown voltage
- Zener diode
- Avalanche diode
- Tunneling diode
- Solar cells
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Summary Lecture 10

Linearly graded p-n-junction:
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Summary Lecture 10

Out of equilibrium/under bias:  LL]|
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Quasi Fermi level:
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|-V characteristic

The assumption we made regarding the absence of currents in the space charge region is quite
rough.

Actually, there is often a non-negligible contribution to the current due to recombination and
generation processes occurring in the depletion region (in Si and GaAs p-n junctions because n,
is small, electron and hole emissions occur through bandgap generation-recombination centers
located near the intrinsic Fermi level (e.g., Au and Cu in silicon and Cr in GaAs junctions))

N

For contacting To get resistive layers

Overview

The total current density then writes

4 )
J=dp+ dpt Jig

Under forward bias, the diffusion current
~ T e+ ’
KJ Jp’d'ﬁ JIn ,diff Jr,g/ dominates over the drift one!
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I-V characteristic

Generation and recombination currents in the space charge region

r > 0 recombination rate 1 n? (e —1) o Cf. last Eq. slide
r < 0 generation rate r= < on T p+n and Jy, = .[_Xp rdx | when E,= E; #23 Lecture 7 and
' e-book by Sze

1) Reverse bias: generation current

3 2¢( N, +N,

QE) n en, W:\/e[ NN, ](Vbi_v)

5 -V>>k;Tle= r=—-—— then |/, =——

S

O . Te . 2Te &\ N
Because n and p << n, in the reverse bias Effective aeneration lifetime eV, =E, —k,TIn| ——
regime g NN,

2) Forward bias: recombination current  Cf. Shockley’s relations

r maximum for n + p minimum (i.e., n = p) and!\r’vp = CS}[,":> n,=p, = nexp(eVi2kgT)

~— —

1 n|2 (eeV/kBT _ 1) V S k T/ ni eeV/ZkBT
max = e > r =
7, 2ni (1 +e V/ZkBT) B € = Il 22_8\
Effective recombination lifetime oc N,
. en. .
— V/2ksT
Finally, J = 2—T'Weff with  w,_ =we'*
e
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|-V characteristic

Experimental /-V curves Total forward current density can be approximated, for p,,
>> n,, (one-sided abrupt p*-n junction) and V' > 3kgT/e

1071
1073
= 10
B n ideality factor:
) « 1 =1 when ideal diffusion current dominates
1077 -
* 17 =2 when recombination current dominates

-9
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VL (V) nk,T
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|-V characteristic

1071

1073 -

1077 |

1079

2. High-injection condition

Series resistance and high-injection

At high current levels, > 1 and increases continuously with the
forward voltage

1. Series resistance

Low and medium current levels: The potential drop /IR across
neutral regions remains small vs. kg T/e (silicon diode with R, = 1.5
ohms, IR, drop at 1 mA only 1.5 mV (vs. kg T/e of 26 mV at 300 K))

High current level: 100 mA, potential drop /IR, of 0.15 V (value six
times larger than kg T/e) = decrease of the bias across the
depletion region
eV/nkgT
|~ ] elevROT _ €

s eeRsl/nkBT

p,(x=x,)=n, =~nexp(eV/2k,T) since@ev/kgr =n’ e@

= | oc exp(eV/2k,T)
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Mass action’s law extended to the out of equilibrium case



Specific p-n junctions: Zener,
avalanche and tunneling
diodes, solar cells
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Reverse breakdown voltage

When the junction is reverse-biased (V,), both the space charge region extent and the built-in
electric field vary awhere Vo = Vit V,),

Abrupt junction case

2 N, +N _
W—\/?( /th D]Veff Emax - 2Veff /W oC Veff
alVp

As a consequence, E, ., increases but at a certain point:

F = gE,,.x = material/impact ionization leading to e-h pair generation
Silicon and GaAs: E = 106 V/cm or higher (breakdown voltage)

In a p-n junction this phenomenon limits the reverse bias called the Zener voltage (V)

V. > V, = large current: Zener or junction breakdown occurs
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Zener diode

aA+IA+
juauny

Volts +ve

:'1'

\ J
Vg < 4E /e = Zener or tunneling effect

Vg > 6E,/e = avalanche multiplication

N, and Np > 5 x 10'7 cm-3 in silicon

and GaAs Intermediate voltages: mixture of tunneling and

avalanche muiltiplication

A Zener diode relies on the tunneling effect: it occurs only in highly-doped p-n junctions

When the doping levels are “low” = “avalanche” effect

Process not inherently destructive but the maximum current must be limited by an external circuit to
avoid any excessive junction heating

Semiconductor physics and light-matter interaction
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Avalanche diode

(a)

Tunneling
effect

________ "™ Avalanche
effect

Avalanche effect

If the space charge region extent is large (W > 0.1 pm)
= avalanche multiplication

For large reverse biases, e-h pairs are accelerated with a
lot of energy, leading to breaking of lattice bonds upon
collision with an atom which creates an e-h pair (impact
ionization), newly created e-h pairs acquiring kinetic
energy from the field, etc.

= avalanche multiplication

Case of asymmetric p-n junctions: p*-n one-sided abrupt junction with N < 10" cm-3
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Breakdown condition

lo- incident current on the left-hand side of the depletion region of width W with W large enough so as
to initiate the avalanche multiplication process

I, increases with the distance through the depletion region to reach the value M, /., at W
M is the multiplication factor defined by M, = [ (W)/l_, (similar treatment for holes)

Total current / = [, + |, (constant in the steady-state)

Incremental electron current at position x equals the number of e-h pairs generated per second in the
distance dx:
/ / /
d(—"j = (iJ (andx)+(ij (a,dx) with a, anda, the e-h ionization rates
e e e
(an and a, =number of e-h pairs generated by a free carrier per unit distance traveled)

dl
= d): —(an —ap)ln =a,l

fa,=a,=a= h (W)I_I" (0) = Jowadx = I—MLH = _[Owadx (assuming 1, (W) =1),V, obtained for M, —> o, i.e., J-Owadx =1

Critical field at which the avalanche process occurs determined using measured a, and a, values + use of Poisson's equation:

—

yo o WE _ £,6,E: (N) E,: critical field
By 9 9p 8 Njg: background doping lightly doped side
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Critical field and breakdown voltage

Larger E, and hence Vj value for
GaAs due to larger bandgap vs Si
as the avalanche process requires
band-to-band excitations

20

(107 Viem)

Critjeal field at breakdown

16

One-sided abrupt junction at 300 K
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Critical field at breakdown voltage for different background doping levels (Ng)

Approximate universal expression of Vg (abrupt junction):
V, = 60(Eg/1.1)3/2 (NB/1016)73/4 V, with E, the room-temperature bandgap in eV and N, the background doping in cm™

Avalanche multiplication mechanisms can generate microwave power (e.g., in IMPATT diodes) and
detect optical signals as in an avalanche photodetector (high gain device used, e.g., for single photon

detection)

Semiconductor physics and light-matter interaction
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Zener diode: electrostatic discharge damage protection

= parallel protection element for electrical components in case of voltage spikes

o Zin

TRANSIENT
ENVIRONMENT

Transient
Current T

TVS
Diode

Semiconductor physics and light-matter interaction

=

Infineon

The world smallest transient voltage suppression (TVS) diode for the
protection of antennas comes from Infineon. With a footprint of just
0.62 x 0.32 mm? in size and 0.31 mm in height (it cannot be too small

PROTECTED
CIRCUIT

BA+OA+
juauny

High impedance under ’
normal operating

Volts +ve

conditions

Low impedance path for

the transient current wheV
the normal operating

voltage of the protected

circuit is exceeded

fo act as an effective heat sink)




Tunnel diode

n-type and p-type doped layers are degenerate (quasi-Fermi levels lie in the CB and VB)

High doping level = W < 10 nm

V<o

A N Filled states in the VB have the same energy than the empty states in the
' CB = tunneling effect from the VB to the CB

_________ = V>0
V tunneling effect from the CB to the VB

Semiconductor physics and light-matter interaction
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Tunnel diode

Tunnel curn

Negative differential resistance (NDR) region

Thermal
current

s __

I minimum when eV = AE,, + AE;

I/l\, = figure of merit of tunnel diodes (~ 8:1 for
Ge and 12:1 for GaSb and GaAs tunnel diodes)

When such a diode is connected to an LC circuit (= electrical resonator) at a DC bias voltage
matching the NDR region, thermal noise induced oscillations in the microwave range can be

generated

The tunnel diode was invented by Leo Esaki in 1958, Nobel prize in Physics in 1973

Semiconductor physics and light-matter interaction
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Tunnel diode

Very short tunneling time = use in the mm-wave region (devices with reduced parasitic capacitance
and resistance, i.e., the RC product is small)

Time constant linked to cutoff frequency!
Low-power microwave applications: local oscillator, frequency-locking circuit

Transmission coefficient T of a particle through a 1D potential barrier of height eV, and thickness d:

B ¥ > See, e.g., Chap. 1 of Quantum Mechanics Vol. 1 by Cohen-
T oc exp(-2/3d) = exp[‘Zd\/ 2m’ (eV, —E)/h } Tannoudii, Diu & Lalo& (Wiley-VCH, Weinheim, 2020)

T value is finite if eV, d and m” are kept small!

I-V characteristic p*-n*junction Negative differential resistance
-1
% % % -
I=1| — |exp| | -—— [+],exp A R:(ij =— 1_1 I_Pexp 1_l
v, , kT dv v, )V, v,
\ Y J \ Y )
Tunnel current Thermal current

Semiconductor physics and light-matter interaction
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Tunnel diode
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Dr. Leo Esaki joined IBM Research in 1960 and became an IBM
Fellow in 1967. He was awarded the Nobel Prize in Physics in
1973 in recognition of his discovery of the tunnel diode.
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Application of diodes: solar cells

Historical article: D. M. Chaplin, C. S. Fuller, and G. L. Pearson, “A new silicon p-n junction i
photocell for converting solar radiation into electrical power”, J. Appl. Phys. 25, 676 (1954) '
(> 900 citations, 1-column long article)

|
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Intensity of solar radiation at average distance of Earth from the sun:
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AMO: solar spectrum outside Earth’s atmosphere (satellite, etc.)
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Wavelength (um
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Application of diodes: solar cells

4 =0)= ln[—Jrljz 8
 |LLsqiegeq _A s

P=1v=1V(e™ " ~1)-1V

Maximum power when dP/dV =0,

Inversion about the voltage axis! kT V B
e
Pmax = /maxvmax ~ IL |:Voc —B_ln(l max ] B_:|
e

k.T e

With a proper load, close to 80% of the product /. V5..can be extracted B

(with I, = 1))

Conversion efficiency (case of a perfect solar cell, no series resistance

|V, FF-1V.
n= ma’;) = PL * where P, is the incident power and FF the fill factor defined F=-5=

-
in in -~
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Application of diodes: multi-spectral solar cells

Photons Photons

!
Metal contal:t.\ L i 3 Negative contact

N-type semiconductor

Depletion region

Voltage U
ol

P-type semiconductor Current I

~

" Positive contact

-
Metal contact -~

Recombination

© Hole = positive charge
O Electron = negative charge

Different solar cells in series to
cover the whole solar spectrum

Semiconductor physics and light-matter interaction

Spectral irradiance (W m? nm’)
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Higher solar cell efficiency
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Multi-spectral solar cells
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Multi-spectral solar cells

Solar Cell Efficiency makes a big difference in the size
and cost of the photovoltaic element

EQUAL POWER OUTPUT

8% Efficient 18% Efficient 28% Efficient 38% Efficient

M- J Cells

Goal: 50% efficiency

2022: 39.5% - NREL

Semiconductor physics and light-matter interaction



Solar cells with conce

ntrator

Concentration enables the use of very small solar cells

EQUAL POWER OUTPUT

Semiconductor physics and light-matter interaction

T

\ ]
//
Cell Size Cell Size
Without Concentration With 1,000x Concentration

2023: 47.6% - NREL
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Solar cells

"Improved cell efficiency
* More power from the same area

"Optimized optics
= Reduce lost sunlight

"Low cost components

= Structural members can be
manufactured in low cost countries

"Heliostat .._;,., ;
= All of the above with fewer, simpler ikl w . el
moving parts e ;

« Current cost (2020) in the USA: $0.05-0.13/kWh
@ $0.05/kWh, a 6 kW residential system will resume to $1.4 per Watt

* Current cost (2019) in the EU: €0.052/kWh
= Mostly due to decrease in the cost of PV modules
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Solar cell efficiency

Best Research-Cell Efficiencies ZiNREL
52
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48 - (2-terminal, monolithic) © CIGS (concentrator) A Perovskite/Si Boeing- (3], 302%) o b NREL (4-J, 665%)
LM = lattice matched ® CIGS A Perovskite/organic Spectrolab Soite(; (4'J) (6-J,143%) L 47.6%)
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A Concentrator O b Boeing- S eclro\abng :
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|- U Lo e Y, KRIAM !
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o (140x) KOpiN Al e e e e m e mm—————————— FhGISE  Alta ofF—O——&3
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(1] IBM A i - SN s UNSW FhG-ISE Sanyo Sanyo nyo . ‘;i‘ X ronlli
— - = / . I L ] = ==
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CIGS: copper indium gallium selenide Key research article: W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency
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Solar cells: payback for PV systems

Figure 1. Energy Payback for Rooftop PV Systems

Multicrystalline, current

Thin-film, current

03548901

System Components
Il Balance of system

Multicrystalline, anticipated
I Frame
[T Module

Thin-film,
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Reaping the environmental benefits of solar energy requires spending energy
to make the PV system. But as this graphic shows, the investment is small.
Assuming 30-year system life, PV systems will provide a net gain of 26 to
29 years of pollution-free and greenhouse-gas-free electrical generation.

Technology (current and anticipated)

Source: DOE/NREL
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Multicrystalline silicon PV rooftop modules

Photovoltaic Solar Electricity Potential in European Countries
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Source: PVGIS & European Union, 2001-20712

Source: Fraunhofer ISE
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